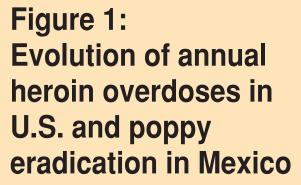
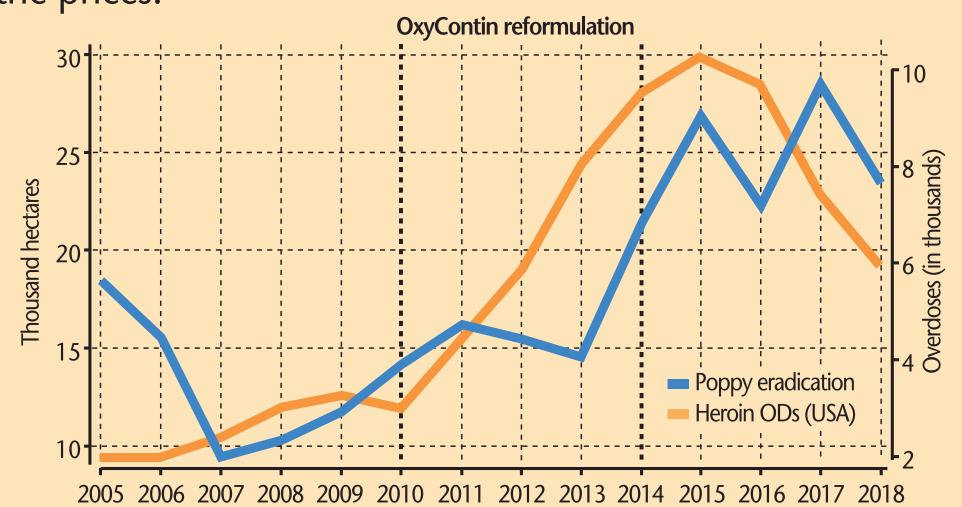
Illegal Crops and Deforestation: Impact of OxyContin Reformulation on Mexican Forests

Author:
Berk Öktem

Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, TREE, Bayonne


1. Background

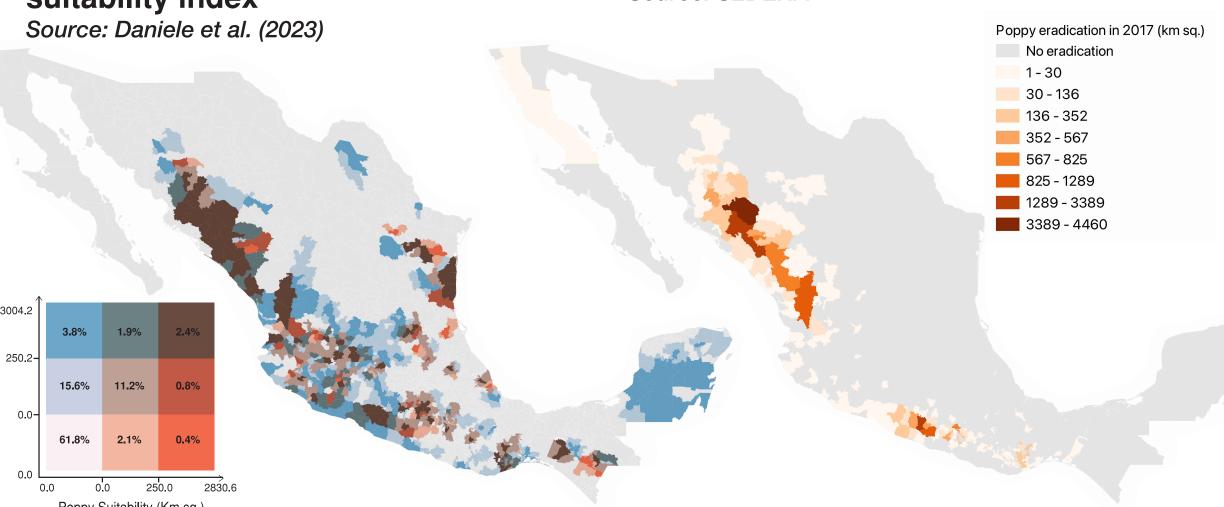

1.1 U.S. opioid crisis and OxyContin reformulation


- Usage of opioids, a drug for acute and chronic pain, tripled between 1996 and 2011 in the U.S. (Evans et al., 2019).
- OxyContin became a highly used opioid due to aggressive marketing techniques employed by Purdue Pharma.
- Until 2010, OxyContin could be crushed into powder for recreational use, resulting in effects similar to heroin. In 2010, Purdue Pharma released an abuse-deterrent version of OxyContin.
- Consequently, the demand for street heroin in the U.S. increased (figure 1), leading to a one-for-one substitution in states with abundant heroin availability (Evans et al., 2019).

1.2. Its impact on poppy cultivation in Mexico

- Mexico is the primary supplier of heroin to the U.S., sourcing poppy, its raw ingredient, mostly within country.
- Poppy demand increased, but the supply did not immediately follow. Poppy eradication data suggests a rise in the cultivated area since 2014 (figure 1).
- Farm-gate poppy prices experienced a delayed increase, with cartels controlling the prices.

2. Research question and findings


- This study examines the impact of OxyContin reformulation on deforestation in municipalities suitable for poppy cultivation (Daniele et al., 2023; Sobrino, 2020).
- Poppy is a profitable cash crop with low production costs. It is primarily cultivated in isolated areas near or within forests, primarily in two regions of Mexico (figure 2.2).
- Does a demand shock on an illegal, high-profit cash crop influence deforestation? What are the underlying mechanisms driving this impact?
- Main findings: During high farm-gate price period (2014-2018), areas suitable for poppy cultivation were associated with: (1) reduced deforestation, (2) decreased expansion of legal crops, and (3) increased number of cartels and poppy eradication efforts (table 1).
- A 1% increase in poppy suitable area (in sq. km) leads to a 9-hectare decrease in deforestation during 2014-2018 (table 1).

3. Empirical strategy: Difference-in-differences

- Methodology adapted from Daniele et al. (2023), using geographical variation in poppy and cannabis suitability (figure 2.1).
- Sample includes municipalities suitable for poppy and/or cannabis cultivation only.
- Poppy suitability index serves as a proxy for cultivation and is associated with poppy eradication (figure 2.2).
- Threat to identification: Outcomes do not exhibit a significant linear trend before the demand shock, and baseline characteristics are not significantly linked to poppy suitability.

Figure 2.1: Geographical variation of poppy and cannabis suitability index

Specification

* p < 0.10 ** p < 0.05 *** p < 0.01

 $Y_{it} = \beta_1 P S_i x Period_{(2010-2013,t)} + \beta_2 P S_i x Period_{(>2013,t)} + X'_{it} Y + \delta_i + \emptyset_t + \psi_{mt} + \epsilon_{it}$

 Y_{it} is outcome in municipality i and year t, PS_i is poppy suitability in km^2 (IHS-transformed), $Period_{(2010-2013,t)}$ and $Period_{(>2013,t)}$ equal 1 during indicated period, X'_{it} cannabis suitability interacted with year dummies δ_i , ϕ_t and ψ_{mt} are municipality, year, and macro region year fixed effects.

Table 1: Impact of OxyContin reformulation on land use and violence

	Deforestation	Agriculture area	Poppy eradication	Homicide	Cartel					
	(1)	(2)	(3)	(4)	(5)	(6)				
	Z-score	Z-score	Z-score	Z-score	Presence	Quantity				
PS x Period (2010-2013)	- 0.005	- 0.014	0.008	0.018**	0.003	0.013*				
	(0.012)	(0.010)	(0.007)	(0.008)	(0.003)	(0.008)				
PS x Period (2014-2018)	- 0.020**	- 0.023**	0.019**	-0.000	0.004	0.020**				
	(0.010)	(0.011)	(0.008)	(0.008)	(0.003)	(0.007)				
Observations	13,127	13,127	13,127	13,127	13,127	13,127				
R ²	0.003	0.001	0.001	0.001	0.000	0.001				

* p < 0.10 ** p < 0.05 *** p < 0.01 SEs are clustered at state-year level. All regressions include unit, year and macro.

Table 2: Investigating mechanisms: migration, household income, yields										
	Migration to U.S. Household level income			Agricultural variables (crop, unit, year FEs)						
	(1)	(2)	(3)	(4)	(5)	(6)				
	Ihs(Migration)	Ihs(Income)	has TV	Z-score prod.	Z-score area	Z-score yield				
PS x Period (2010-2013)	- 0.003	- 0.010	- 0.000	- 0.001	- 0.001	0.000				
	(0.003)	(0.017)	(0.001)	(0.001)	(0.001)	(0.001)				
PS x Period (2014-2018)	- 0.011***	- 0.010	0.000	- 0.001	- 0.002***	0.001**				
	(0.002)	(0.024)	(0.001)	(0.001)	(0.001)	(0.001)				
Observations R ²	11,256	4,459,825	5,628,513	393,960	393,960	393,960				
	0.002	0.061	0.024	0.000	0.000	0.000				

4. Mechanisms

4.1. Does out-migration to U.S. reduce pressure on forests?

- Daniele et al. (2023) found a positive association between migration to the U.S. and poppy suitability after a violent period, using U.S. state Mexico municipality pairs fixed effects.
- My aggregated analysis indicates an opposite relationship during the same period (table 2), suggesting less migration to the U.S. during the high poppy price period.

4.2. Is there an increase in household income?

- No evidence of an increase in household income based on census data (table 2).
- Households may not declare earnings related to poppy cultivation, but material possessions such as owning a TV are also not associated with poppy suitability (table 2).

4.3. How are legal crops influenced by the poppy demand shock?

- Using a more detailed fixed effects structure (crop, municipality, year), I find that poppy suitability is associated with an increase in average crop yields (table 2).
- This may be due to the abandonment of subsistence farming as a result of out-migration and/or the intensification of farming practices due to income from poppy cultivation.

5. Discussion

- During the price boom period, illegal crops may reduce deforestation in short term by limiting the expansion of legal crops.
- In the case of poppy cultivation in Mexico, the reduction in agricultural expansion is accompanied by an increase in average crop yields for legal crops.
- To-do: Investigate whether the increase in crop yields is a result of intensification or the abandonment of less productive subsistence farming.

6. References

Daniele, G., Le Moglie, M., and Masera, F. (2023). Pains, guns and moves: The effect of the US opioid epidemic on Mexican migration. Journal of Development Economics, page 102983.

Sobrino, F. (2020). Mexican cartel wars: Fighting for the US opioid market. URL: https://www.fersobrino.com/files/DraftPaper.pdf

Evans, W. N., Lieber, E. M., and Power, P. (2019). How the reformulation of OxyContin ignited the heroin epidemic. Review of Economics and Statistics, 101(1):1–15